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Statistical mechanics of triangulated ribbons

Boris Mergell,* Mohammad R. Ejtehadi, and Ralf Everaers
Max-Planck-Institut fu¨r Polymerforschung, Postfach 3148, D-55021 Mainz, Germany

~Received 18 December 2001; revised manuscript received 18 April 2002; published 12 July 2002!

We use computer simulations and scaling arguments to investigate statistical and structural properties of a
semiflexible ribbon composed of isosceles triangles. We study two different models, one where the bending
energy is calculated from the angles between the normal vectors of adjacent triangles, the second where the
edges are viewed as semiflexible polymers so that the bending energy is related to the angles between the
tangent vectors of next-nearest-neighbor triangles. The first model can be solved exactly whereas the second is
more involved. It was recently introduced by Liverpool and Golestanian, Phys. Rev. Lett.80, 405~1998!; Phys.
Rev. E62, 5488 ~2000! as a model for double-stranded biopolymers such as DNA. Comparing observables
such as the autocorrelation functions of the tangent vectors and the bond-director field, the probability distri-
bution functions of the end-to-end distance, and the mean-squared twist we confirm the existence of local twist
correlation, but find no indications for other predicted features such as twist-stretch coupling, kinks, or oscil-
lations in the autocorrelation function of the bond-director field.
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I. INTRODUCTION

A characteristic feature of many biopolymers is their hi
bending stiffness. Contour lengths of the order of microm
ters and persistence lengths of the order of 50 nm in the
of DNA even allow microscopy techniques to be used
directly observe their structure and dynamics@3,4#. The
model mostly used to interpret recent experimental data
micromechanical manipulations of single DNA chains@3–8#
is that of the Kratky-Porod wormlike chain in which th
polymer flexibility is determined by a single length, the pe
sistence lengthl p . Generalizations account for the chain h
licity and coupling terms between bending, stretching, a
twisting allowed by symmetry@9–20#. All these continuum
models of DNA neglect the double-stranded structure
DNA and one may ask, if this feature could not cause qu
tative different behavior.

The bending stiffness of single- and double-strand
DNA, for example, differs by a factor of 25@21#. The sim-
plest model that takes the double strandedness into accou
the railway-track model@22# where two wormlike chains are
coupled with harmonic springs. In two dimensions one fin
drastical consequences: the bending fluctuations in the p
of the ribbon are strongly suppressed. The molecule beco
effectively stiffer on larger length scales. But the releva
question is what are the effects in three dimensions? Liv
pool and co-workers@1,2# investigated a version of th
railway-track model in three dimensions where bending
the plane of the ribbon is forbidden by a constraint. Us
analytical and simulation techniques they predict the e
tence of a low-temperature regime where ribbons adop
kink-rod structure due to a spontaneously appearing sh
range twist structure resulting in an oscillatory behavior
the autocorrelation function of the bond-director field. F
thermore a twist-stretch coupling is predicted.

*Electronic address: mergell@mpip-mainz.mpg.de
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We study the discretized version of the simulation mo
of Liverpool and co-workers@1,2# in the low-temperature
regime with the help of scaling arguments and Monte Ca
~MC! simulations. In order to understand and to quantify t
effects arising from the local twist structure of the Liverpo
model we compare it with an analytically more tractab
model where the bending stiffness is defined via the inter
tion of the normal vectors so that there is no tendency
helical structures. Furthermore, we perform several M
simulation runs with an additional external force in order
test if the preferred buckling mechanism occurs via kinks

II. CONTINUOUS DESCRIPTION OF TWO COUPLED
SEMIFLEXIBLE CHAINS

A ribbon is an inextensible, unshearable rod that can
parameterized by the arclengths. To each points one at-
taches a triad of unit vectors$di(s)%. The vectorsd1(s) and
d2(s) are directed along the two principle axis of the cro
section, the vectord3(s) is the tangent vector. As the triad i
an orthonormal basis set they satisfy kinematic equation
the form

d

ds
di~s!5e i jkuj~s!dk~s! ~1!

with e i jk being the alternating tensor anduj (s) representing
bend @u1(s) out of plane, andu2(s) in plane# and twist
strains@u3(s)#, respectively. One can find a relation betwe
the ordinary Frenet equations containing only two para
eters, the curvaturek(s) and the torsiont(s),

dt~s!

ds
5k~s!n~s!, ~2!

db~s!

ds
52t~s!n~s!, ~3!
©2002 The American Physical Society03-1
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dn~s!

ds
5t~s!b~s!2k~s!t~s!, ~4!

and Eq.~1! by fixing d3(s)5t(s) so thatd1(s) andd2(s) are
given by a rotation aroundt(s) with angle C(s). In this
context C(s) can be seen as the twist angle@17,23#. A
straightforward calculation gives for the generalized t
sions: u1(s)52(d/ds)d3(s)•d2(s)5k(s)cosC(s), u2(s)
5(d/ds)d3(s)•d1(s)5k(s)sinC(s), and u3(s)
5(d/ds)d1(s)•d2(s)5t(s)1dC(s)/ds. The total twist Tw
of a ribbon is thus given by the integration of the local tw
u3(s) along the contour normalized by the factor 2p

Tw5
1

2pE0

L

u3~s!ds ~5!

with L being the contour length. Together with the parame
setûi(s), which determines whether the stress-free refere
configuration includes spontaneous curvature and twist,
elastic part of the Hamiltonian is usually defined by qu
dratic terms inui(s)2ûi(s) @11–20,24#.

It is an interesting question to which extent this gene
description applies to more microscopic models of DN
@25#. The simplest case is that of a ‘‘railway-track’’ or ladd
model consisting of two~or more! semiflexible chains

Htt5
k

2E0

L

dsH S d2r1~s!

ds2 D 2

1S d2r 2~s!

ds2 D 2J , ~6!

plus a coupling between opposite points on different cha
@22#. Liverpool and co-workers@1,2# considered the limit
where the distancea between the coupling points~i.e., the
width of the ribbon! is imposed as a rigid constraint th
prevents bending in the plane of the ribbon:dt(s)/ds•b(s)
50 where t(s)5dr (s)/ds is the tangent vector to th
midcurve r (s)5r1(s)2a/25r2(s)1a/2 and b(s) is the
bond director pointing from one strand to the other. No
that the constraint is equivalent toC(s)50. Rewriting Eq.
~6! in terms of ribbon variables they found

Htt5
k

2E0

L

dsH 2S d2r ~s!

ds2 D 2

1
a2

2 S d2b~s!

ds2 D 2J , ~7!

which can also be expressed as

S dt

dsD
2

5k2, ~8!

S d2b

ds2D 2

5S du1

ds D 2

1~u1
22u3

2!21S du3

ds D 2

5S dk

dsD
2

1S dt

dsD
2

1~k22t2!2. ~9!

Note, that henceforth we useb(s) as the bond director an
n(s) as the normal vector to the ribbon plane.
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III. GEOMETRY OF TRIANGULATED RIBBONS

Following Liverpool and co-workers@1,2# we consider
ribbons discretized by triangulation. In order to extract so
fundamental properties of double-stranded semiflexible po
mers we consider a ribbonlike system composed of isosc
triangles as shown in Fig. 1. The orientation of each trian
is given byN21 rotations around the edges of the triang
with folding angles$u i%. N is the number of triangles char
acterized by a set of trihedrons$t i ,bi ,ni% where t i is the
tangent vector of thei th triangle,bi is the bond director, and
ni is the normal vector.

Going from one set of trihedrons$t i ,bi ,ni% to the neigh-
bor set$t i 11 ,bi 11 ,ni 11% implies a rotationRi around the
edge between the respective triangles with angleu i and a
reflection ofbi andni , i.e.,

S t i 11

bi 11

ni 11

D 5TRiS t i

bi

ni

D ~10!

with

T5S 1 0 0

0 21 0

0 0 21
D , ~11!

Ri5S t i•t i 11 t i•bi 11 t i•ni 11

bi•t i 11 bi•bi 11 bi•ni 11

ni•t i 11 ni•bi 11 ni•ni 11

D . ~12!

The matrix productTRi can be viewed as a transfer matri
The evaluation of the scalar products ofRi gives

Ri ,115cos~u i !1cos~a!2@12cos~u i !#,

Ri ,1252cos~a!sin~a!@12cos~u i !#,

Ri ,1352sin~a!sin~u i !,

Ri ,215cos~a!sin~a!@12cos~u i !#,

Ri ,225cos~u i !1sin~a!2@12cos~u i !#,

Ri ,2352cos~a!sin~u i !,

FIG. 1. Illustration of the used variables. The length of ea
triangle ut i u corresponds to the bond lengthb and the heightubi u
5

1
2 b tan(a) defines the strand separation length.$u i% term the fold-

ing angles.
3-2
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Ri ,315sin~a!sin~u i !,

Ri ,325cos~a!sin~u i !,

Ri ,335cos~u i !. ~13!

In order to quantify properties such as bending and tw
ing within the given discretization we study the relation b
tween the folding anglesu i and these quantities that is illus
trated in Fig. 2. One recognizes that the chain is not ben
case ofu i2u i 115du i50 and that one gains purely twiste
structures ifu i[const. On the other hand, the chain is u
twisted but bent ifdu i52u i . In case ofu iÞ6u i 11 and u i
Þ0 the chain is bent and twisted simultaneously resulting
solenoidal/torsional structures as is illustrated in Fig. 2~f!. A
kink is characterized by unlike twists meeting at an edge a
is shown in Fig. 2~d!.

Due to the triangulation of the ribbon one has to consi
three triangles to calculate the discretized expressions fo
out-of-plane bending strainu1(s)52(d/ds)t(s)•n(s)'
2@ t(s1Ds)2t(s)#/Ds•n(s)52(1/Ds)t(s1Ds)•n(s) and
the twist strain u3(s)5(d/ds)b(s)•n(s)'@b(s1Ds)
2b(s)/Ds#•n(s)5(1/Ds)b(s1Ds)•n(s), which we callk i
and t i , respectively. The local curvaturek i and the local
twist ratet i between trianglei and i 12 are therefore given
by

k i[2
1

b (
j 5 i

i 11

nj•t j 11'
sin~a!

b
du i , ~14!

FIG. 2. Illustration of bending, twisting, and kinking.~a! A flat
ribbon as ground state conformation.~b! A twisted structure.~c! The
same twisted structure obtained with a smoother discretization~d!
Unlike twists meeting at the center resulting in a kink withu i posi-
tive for i ,N/2, negative fori>N/2, and uu i u5uu i 11u, i.e., du i

50,; iÞN/2, andduN/252uN/2 . ~e! A bent structure.~f! A mixture
of bent and twist resembling a solenoidal structure.
01190
t-
-

in

-

n

it

r
he

t i[
1

b (
j 5 i

i 11

nj•bj 11'
cos~a!

b
~u i1u i 11!, ~15!

where the accuracy of the right-hand side expressions o
depends on the refinement of the discretization, i.e., on
values ofb anda.

Hence a spontaneous bending can be introduced via
additional term to the Hamiltonian with Hcurv
5kcurv( i(( j 5 i

i 11nj•t j 112dusp,i)
2 and a spontaneous twis

can be introduced by an additional termHTw

5kTw( i(( j 5 i
i 11nj•bj 112usp,i)

2. Note, that the total twist Tw
is given by Tw51/(2p)( it i .

IV. MODEL DESCRIPTION

The bending stiffness within the given discretization c
be taken into account by various interactions. One poss
definition of a bending stiffness, which makes the proble
analytically tractable, is a nearest-neighbor interact
~plaquette stiffness! between the normal vectors$ni% in anal-
ogy to the triangulation of vesicles@26# that results in the
following Hamiltonian:

Hnn

kBT
5k (

i 51

N21

~11ni•ni 11!. ~16!

In contrast Liverpool and co-workers@1,2# were interested in
the statistical mechanics of coupled wormlike chains a
therefore chose a next-nearest-neighbor interaction~edge
stiffness! between the tangent vectors$t i% with rigidity k so
that the Hamiltonian is given by

Htt

kBT
5k (

i 51

N22

~12t i•t i 12!. ~17!

Both definitions lead to a flat ribbon as the ground st
conformation for zero temperaturesT50.

The above defined interactions lead to very distinct c
formational features of the ribbon that can be understood
building up the ribbon just by adding successively the
angles in the absence of thermal fluctuations. Assuming
u1Þ0 all subsequent anglesu i with i .1 vanish in the case
of the nearest-neighbor interaction (Hnn). In contrast the
tangent-tangent interaction (Htt) leads to the formation of a
helix with u i5u i 11 as a result of the enforced alignment
the tangent vectors. This suggests a correlation of the fold
angles$u i% that entails at least locally helical structures.

Assuming that the chains are rather stiff~continuum
limit !, i.e., small folding anglesu i , one can expand the
Hamiltonians with regard tou i . SinceHnn is diagonal inu i ,
it is sufficient to consider terms up to second order.Htt con-
tains coupling terms betweenu i and u i 11, which makes it
necessary to keep terms up to fourth order in the analys

Hnn

kBT
'

k

2 (
i 51

N21

u i
2 , ~18!
3-3
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Htt

kBT
'

k

2 (
i 51

N22 H sin~a!2du i
2S 12

1

12
du i

2D
1sin~a!2cos~a!2u i

2u i 11
2 J ~19!

with du i5u i2u i 11.

V. MC SIMULATION

Both models have local interactions and can be stud
conveniently using a dynamic MC scheme. Trial moves c
sist of small random changes of the folding angles by a sm
amplitude 1/Ak, where k is the bending stiffness, and ar
accepted or rejected according to the Metropolis sche
@27#. In the simulations we always use the full Hamiltonia
Eqs. ~16! and ~17!. MC moves changing the folding angle
correspond to the well-known Pivot algorithm@28#. The con-
formations are subsequently recalculated from Eqs.~10!–
~13! and analyzed. Each simulation run comprises 100
MC moves where one MC move corresponds toN21 trials
with N being the number of triangles. The longest correlat
time we observed was of the order of 50 MC moves for
total twist of the chain. In order to check if equilibrium
reached we compared simulation runs with a flat initial co
formation, i.e.,u i50, with simulation runs with crumpled
conformations corresponding to equally distributed angleu i

out of the interval@21/Ak;1/Ak#. Both runs yield the same
results for the calculated observables.

VI. PLAQUETTE STIFFNESS

Since the HamiltonianHnn of Eq. ~18! is quadratic and
diagonal inu i the solution in angle space is trivial. As
consequence of the independence of successive fol
angles it yields^u iu j&5(1/k)d i j and ^A&5^)k5 i

j (TRk)&
5^TR k&

j 2 i where the matrix product is carried out in th
eigenvector basis of̂TRk& ~the eigenvectors depend only o
the geometry of the triangles!. The diagonal elements of^A&
are the correlation functions of^t i•t j&,^bi•bj&,^ni•nj&. Thus
one calculateŝTRk&, diagonalizes it, raises it to the powe
of j 2 i , transforms it back, and performs the continuu
chain limit with s5( j 2 i )b,l p5bk/sin(a)2, a
5 1

2 b tan(a),( j 2 i )→`,b→0, i.e., a→0, where l p is the
persistence length,a is the strand separation,b is the Kuhn
segment length, 0,s,L is the arclength, andL is the con-
tour length. Note that within this modela is a fixed param-
eter that determines bending characteristics of the ribbon
exact expression for the autocorrelation functions is
tained,

^t~0!•t~s!&5expS 2
s

l p
D , ~20!

^b~0!•b~s!&5expS 2
s

l ptan~a!2D , ~21!
01190
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^n~0!•n~s!&5expS 2
s

l psin~a!2D . ~22!

For a5p/2 one recovers the usual wormlike chain result
two dimensions. All cross-correlation functions~the off-
diagonal elements of̂A&) vanish. Equations~21! and ~22!
represent the persistence lengthl p,in5 l ptan(a)2 for bending
within the plane of the ribbon and the persistence len
l p,out5 l psin(a)2 for bending out of the plane of the ribbon
respectively @24#. This model was recently treated as
twisted zigzag fiber within the framework of a two-ang
model for studying structural properties of chromatin@29#.

From the tangent-tangent correlation function one can
culate the mean-squared end-to-end distance,

RE
25^„R~L !2R~0!…2&5E

0

L

ds1E
0

L

ds2^t~s1!•t~s2!&

52Ll p22l p
2F12expS 2

L

l p
D G . ~23!

Equations~20! and ~23! are identical to results for single
wormlike chains@30#. Equation~23! interpolates between th
limiting behaviors of random coils (2Ll p) for L@ l p and
rigid rods (L2) for L! l p .

VII. EDGE STIFFNESS

In the following we present a simple scaling argume
that allows us to rationalize the behavior of the Liverpo
model. Consider first thedu part of Eq.~19!. In the absence
of other terms the folding angles would perform a simp
random walk with step lengtĥdu i

2&51/k sin(a)2. The lead-
ing term limiting the fluctuations of the folding angle
around zero is of orderO(u i

4). The behavior of the coupled
system can be inferred from scaling arguments similar
those used for polymer adsorption. Consider a vanish
folding angle and follow the chain in either direction. Up
a characteristic number of stepsg the folding angles will
show simple diffusion. As a consequence the mean-squ
folding angle averaged over this short segment is^u i

2&
5g^du i

2& corresponding to a potential energyEex /kBT
;g^u i

4&;3g^u i
2&2;3g3^du i

2&. The free diffusion of the
folding angles has to stop when this potential energy is
orderkBT, suggesting

^du i
2&5

1

k sin~a!2
. ~24!

g;S k tan~a!2

3 D 1/3

, ~25!

^u i
2&5g^du i

2&, ~26!

^u iu j&

^u i
2&

5expS 2
u j 2 i u

2g D . ~27!
3-4
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Figure 3 shows that these arguments are fully suppo
by the results of our MC simulations withg5(0.5660.05)
3@k tan(a)2/3#1/3.

Using again the transfer matrix ansatz one obtains in
low-temperature limit by considering only terms of the ord
O(u i

2) the following expression fort i•t j , bi•bj andni•nj :

FIG. 3. ~a!, ~b! Scaling plots for^u i
2& ~downward triangles!,

^du i
2& ~squares!, and g with a5p/3 ~upward triangles!, and k

550, respectively.~c! Numerical evidence for the derived expre
sion of ^u iu j&. The data refer tok550 ~squares!, k5100 ~circles!,
k5200 ~upward triangles!, k5500 ~downward triangles!, and a
5p/4. We determine the correct prefactorgf it50.5660.05 of g
from the numerical data of the folding angle correlation functi
^u iu j& that is our solely free parameter and use it for all followi
comparisons between scaling analysis and numerical results.
01190
d

e
r

t i•t j512
sin~a!2

2 S (
k5 i /2

j /2

du2kD 2

, ~28!

bi•bj512
cos~a!2

2 S (
k5 i

j 21

uk
212(

k5 i

j 21

(
k85k11

j 21

ukuk8D ,

~29!

ni•nj512
1

2 (
k5 i /2

j /2

du2k
2 1cos~a!2(

k5 i

j 21

(
k85k11

j 21

ukuk8 .

~30!
Note thati , j are either odd or even depending on whi

strand is under consideration. Without loss of generality
choosei , j to be even. First of all we use that^t(0)•t(s)& has
to interpolate between 1 fors50 and 0 fors→` and that
the right hand side of Eq.~28! is the Taylor expansion up to
first order of the exponential function
exp(sin(a)2/2((k5 i /2

j /2 du2k)
2). Substituting thens52u j 2 i ub

and l p54bk, performing the continuum chain limit withb
→0 anda→p/2, respectively, i.e., keeping the strand sep
rationa constant, yields the following expression for the a
tocorrelation function of the tangent vectors:

^t~0!•t~s!&5expS 2
s

l p
D . ~31!

Thus the mean-squared end-to-end distanceRE
2 becomes

identical to Eq.~23!. Equation~31! is confirmed by our MC
simulation data shown in Fig. 4.

To get an idea of the structural properties characterized
the autocorrelation function of the bond directors^bi•bj& we
calculate the mean-squared twist^Tw( i , j )2& of the ribbon.
Following the definition of the local twist ratet i of Eq. ~15!
the total twist between two triangles of indexi and j is just
the sum of the local twist angles determined by the proj
tions of the normal vector of thei th triangle onto the bond
director of the (i 11)th triangle, that is

FIG. 4. Comparison of MC data and analytical results~solid
line! for the autocorrelation function of the tangent vectors withk
550 ~squares!, k5100 ~circles!, k5200 ~upward triangles!, k
5500 ~downward triangles!, anda5p/3, andk550 anda5p/4
~diamonds!, a5p/6 ~pentagons!.
3-5
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Tw~ i , j !5
1

2p (
k5 i

j 21

ni•bi 115
cos~a!

2p (
k5 i

j 21

uk . ~32!

Comparing Eqs.~29! and~32! we find for small twist angles

^bi•bj&5122p2^Tw~ i , j !2&. ~33!

Hence the autocorrelation function of the bond directors
be seen as a measure for the local twist structure of
ribbon.

In contrast to the plaquette stiffness model the anglesu i
are correlated@see Eq.~27!#. Therefore the double summa
tion over^u iu j& in Eq. ~29! yields an analogous result as it
obtained in the calculation of the mean-squared end-to-
distance of the wormlike chain model. Using the deriv
scaling expressions of Eqs.~25! and~26!, the same substitu
tions as in Eq.~31!, and performing the continuum chai
limit one obtains the following relationship for the autoco
relation function of the bond directors:

^b~0!•b~s!&5exp~22p2^Tw~0,s!2&! ~34!

with

^Tw~0,s!2&5
1

3p2 H s

gb
22F12expS 2

s

2gbD G J ~35!

andgb5gf it
1/3l p

1/3a2/3/31/3, wheregf it50.5660.05 is the fitted
prefactor for the scaling functiong. a represents the stran
separation of the ribbon which is given bya5ubi u
5 1

2 b tan(a). Hence we observe two length scales influen
ing the local twist structure of the ribbon: on the one ha
the single-strand persistence lengthl p and on the other hand
the strand separationa. The predicted scaling behavior o
^b(0)•b(s)& can be observed in the simulation data as it
shown in Fig 5. Note that̂b(0)•b(s)& as well as all other
calculated observables within this model is independen
the geometry of the triangles in contrast to the previo
model wherea was a fixed parameter.

Equation~30! can be evaluated in the same manner res
ing in

^n~0!•n~s!&5^t~0!•t~s!&^b~0!•b~s!&

5expS 2
s

l p
22p2^Tw~0,s!2& D . ~36!

Equation ~34! shows that the autocorrelation function
the normal vectors is the product of̂t(0)•t(s)& and
^b(0)•b(s)& ~Fig. 6!. For very stiff chains, the tangent co
relation function gives just small corrections to the norm
vector correlation function. Therefore one can interpret
~34! as the rigid rod limit of Eq.~36!.

Other important structural properties of the ribbon can
extracted out of the cross-correlation functions.^n(0)•t(s)&
and ^n(0)•b(s)& describe the mean curvature and me
twist, respectively, and vanish in both models for symme
reasons. For̂b(0)•t(s)& we empirically observe the follow
ing relationship:
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^b~0!•t~s!&5~2p!2a
d

ds
^Tw~0,s!2&e2(2p)2^ Tw (0,s)2&.

~37!

Equation~37! can be understood qualitatively in the follow
ing way. Due to the anisotropic rigidity of the ribbo
the scalar productb(0)•t(s) is only nonzero if the chain is
bent and twisted simultaneously. In case the ribbon is eit
solely bent or solely twisted the bond directors are alwa
perpendicular to the tangent vectors and the scalar pro
b(0)•t(s) vanishes for alls. The rate of mean twist of one
helical persistence lengthl b5gb that defines the size of th
locally existing helical structures can be calculated with E

FIG. 5. ~a! Autocorrelation function of the bond directors wit
k550 ~squares!, k5100 ~circles!, k5200 ~upward triangles!, k
5500 ~downward triangles!, anda5p/3. The data show the pre
dicted functional~solid line! form for ^b(0)•b(s)& of Eq. ~34!. In
order to check the scaling argument of Eq.~34! we determined the
correct prefactorgf it50.5660.05 ofg with the help of the numeri-
cal data of̂ u iu j& ~see Fig. 3! and put it in Eq.~34!. The agreement
is excellent. The dashed line which oscillates is the predicted fu
tional form of Liverpool and co-workers@1,2#. ~b! Comparison of
our simulation data with the analytical result of Liverpool and c
workers~dashed line!. The predicted oscillation and resultant pitc
is not recovered. But we find the same scaling behavior of
helical persistence length withl b5gb; l p

1/3a2/3. It is also striking
that the predicted functional form of Liverpool and co-workers is
very good agreement with our numerical data within one heli
persistence lengthl b .
3-6
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~35! yielding A^Tw(0,bg)2&'6 1
16 . This corresponds to a

typical twist angle ofC5p/8 using Tw52pC. Within l b
the twist rate is determined by the derivative of the me
squared twist (d/ds)^Tw(0,s)2& that gives rise to the in-
creasing correlation function̂b(0)•t(s)& up to the maxi-
mum value atl b5gb. For larger internal distances of th
chain the rate of mean twist is a random sequence of6 1

16 so
that the cross-correlation function has to vanish and there
decreases exponentially with exp(2(2p)2^Tw(0,s)2&). Figure
7 compares Eq.~37! with our numerical data. The agreeme
is excellent.

VIII. BEHAVIOR UNDER COMPRESSION: EULER
BUCKLING VS KINKS

As discussed in Sec. III the edge stiffness model inclu
local twist correlations at least on small length scales a

FIG. 6. Autocorrelation function of the normal vectors withk
550 ~squares!, k5100 ~circles!, k5200 ~upward triangles!, k
5500 ~downward triangles!, and a5p/3. We divided out of the
normal vector correlation function~solid line! the tangent correla-
tion function ^t(0)•t(s)& @see Eq.~36!# so that one should regai
the same exponential decay as for^b(0)•b(s)& that is in agreemen
with the numerical data.

FIG. 7. Cross-correlation function of the bond directors and
tangent vectors withk550 ~squares!, k5100 ~circles!, k5200 ~up-
ward triangles!, k5500~downward triangles!, k51000~diamonds!,
anda5p/3. The data validate the predicted functional form~solid
line! for ^b(0)•t(s)& of Eq. ~37!.
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consequence of the correlation of the folding angles$u i%. In
order to understand and to quantify the effects arising fr
the local twist we measured the probability distribution fun
tions of the folding angles, of the twist, and of the end-to-e
distance for different rigidities and compared the latter w
the usual wormlike chain model to see which differenc
occur.

If there is a preference for kinking one can enforce t
property by applying an additional constant forceFbuck
5 f RE /RE that compresses the ribbon. In addition t
change in the end-to-end distanceRE caused by the buckling
force should affect the twist distribution functionP(Tw) if
RE and Tw are coupled.

For small forces we calculate the change of twist un
the influence of the external forceFbuck5 f within the frame-
work of linear response theory:

^DTw~0,L !2&5^Tw~0,L !2&2^Tw~0,L !2& f 50

52b f ~^RETw~0,L !2& f 50

2^RE& f 50^Tw~0,L !2& f 50! ~38!

with b51/kBT. This predicts a change of the mean-squa
twist of the chain if a twist-stretch coupling determined
^RETw(0,L)2& f 50 exists. Note that̂ RETw(0,L)& f 50 van-
ishes due to symmetry reasons. The evaluation of our
merical data yields that̂RETw(0,L)2& is uncorrelated, too.
To quantify if higher order terms inf contribute to a change
of ^Tw(0,L)2& we carried out several simulation runs wi
varying force strengthsf 5$0,0.01,0.02, . . . ,0.09% corre-
sponding to RE( f )/RE(0)5$1,0.95,0.87,0.71,0.51,0.36
0.26,0.21,0.17,0.15%.

Figure 8 shows the same Gaussian shape for all meas
probability distribution functions of the total twist of the rib
bon P„Tw(0,L), f …. This implicates that there is no twist
stretch coupling inherent in the system. The same is valid
the distribution function of the folding angles.

e

FIG. 8. Comparison of the probability distribution functions
the total twist of the ribbon for both models withf
5$0,0.01,0.02, . . . ,0.09% andl p5L5400 with the scaling analysis
for f 50. One recovers the same Gaussian shape for all valuesf.
3-7
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Moreover we measured the probability distribution fun
tion P(RE , f ) of the end-to-end distanceRE for all applied
forcesf. Using the multiple histogram method developed
Ferrenberg and Swendsen@31# one can then recombine a
measured histograms with a reweighting procedure t
single probability distribution functionP(RE) with overall
very good statistics. Figure 9 showsP(RE) for Htt and the
wormlike chain model. Quite contrary to a shift to noticeab
shorter end-to-end distancesRE as one would expect for th
above described phenomena of kinks one just recovers
usual wormlike chain behavior. This indicates that the ribb
just bends under the external force in contradiction to a ki
rod structure. Another quantity that is sensitive to the pr
ence of kinks is a three-point correlation function of the en
to-end distanceRE and the twist to the left Tw(0,L/2), and to
the right Tw(L/2,L) of the center of the chain. Due to th
buckling force the center of the chain is labeled which me
that a kink is detected if the end-to-end distances w
Tw(0,L/2)Tw(L/2,L),0 ~unlike twists meeting at the cen
ter! are smaller than the end-to-end distances w
Tw(0,L/2)Tw(L/2,L).0 ~like twists meeting at the center!.
Figure 10 shows the mean end-to-end distance dependin
the value of Tw(0,L/2)Tw(L/2,L) for l p5200,L5400, and
f 50,f 50.03,f 50.06. We do not find an asymmetry betwe
like and unlike twists meeting at the center as it would s
port the prediction of kinks made by Liverpool and c
workers@1,2#.

IX. SUMMARY

We have reinvestigated the mechanical properties of
model introduced by Liverpool and co-workers@1,2# of a
double-stranded semiflexible polymer and rationalized

FIG. 9. Probability distribution functions of the end-to-end d
tance of the edge stiffness model for different discretizationsN
5800 upward triangles,N5600 downward triangles! with a
5p/4 andl p5L5400 calculated with the help of the multiple his
togram method@31# and the usual wormlike chain model~solid
line!. The probability distribution function~PDF! of the wormlike
chain model is calculated with the derived analytical expression
Wilhelm and Frey@32#.
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results of our MC simulations with the help of a simp
scaling argument. We recover the predicted simple expon
tial decay of the tangent-tangent correlation function with
single-strand persistence lengthl p and thatt(0)•t(s) is inde-
pendent of the separationa of the two strands, which is, in
addition tol p the other relevant length scale in the proble
Also in agreement with Refs.@1,2# we find that the helical
persistence lengthl b and the helical pitchP scale with
l p
1/3a2/3. Qualitatively, one would expect to see oscillations

the bond-director correlation function, ifP< l b . This can be
understood by calculating the rate of mean twist withinl b

5gb, i.e., A^Tw(0,gb)2&. If the mean twist rate exceedsp
an oscillatory behavior has to be observed. But our calcu
tion gives a twist rate withinl b5gb of approximately
61/16. For larger distances of the chain the rate of me
twist is just given by a random sequence of61/16 and thus
cannot account for an oscillatory behavior of^b(0)•b(s)&.
Liverpool and co-workers predictP5 l b , while our analysis
indicatesP516l b as it is demonstrated in Fig. 5~b!. The
authors claimed support from their own simulations, b
failed to provide a quantitative comparison between th
numerical and analytical results. In fact the presented os
lations seem to be ordinary fluctuations within the statisti
errors. But as can be seen in Fig. 5~b! the predicted func-
tional form for the bond-director autocorrelation function
in very good agreement with our numerical data as well
with our scaling results within one helical persistence len
l b5gb.

Moreover our simulation results with applied consta
buckling forces do not provide any evidence of the predic
tendency of kinking or the claimed twist-stretch couplin

f

FIG. 10. End-to-end distanceRE as a function of the product o
the twist left and right of the center of the cha
Tw(0,L/2)Tw(L/2,L), which is a measure for unlike~negative sign!
and like ~positive sign! twists meeting at the center, and as a fun
tion of the applied buckling force withf 50 ~squares!,0.03~circles!,
0.06~triangles!, and l p5200, L5400. RE refers to the average o
one interval of Tw(0,L/2)Tw(L/2,L) and ^RE& refers to the mean
value of all sampled end-to-end distances. One does not find
asymmetry between end-to-end distances for like and unlike tw
meeting at the center. The larger fluctuations for larger values
Tw(0,L/2)Tw(L/2,L) are the result of a poorer sampling rate.
3-8
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Thus contrary to the claim made in Refs.@1,2# the local twist
structure does not suffice to explain experimental obse
tions such as the twist-stretch coupling@6,33# and the kink-
rod structures@34# of helical double-stranded molecule
These features require the inclusion of a spontaneous t
incorporated by an additional term in the Hamiltonian, e
HTw5kTw( i(( j 5 i

i 11nj•bj 112usp,i)
2 @15–18,35–38#.
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