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Statistical mechanics of triangulated ribbons

Boris Mergell? Mohammad R. Ejtehadi, and Ralf Everaers
Max-Planck-Institut fu Polymerforschung, Postfach 3148, D-55021 Mainz, Germany
(Received 18 December 2001, revised manuscript received 18 April 2002; published 12 Jyly 2002

We use computer simulations and scaling arguments to investigate statistical and structural properties of a
semiflexible ribbon composed of isosceles triangles. We study two different models, one where the bending
energy is calculated from the angles between the normal vectors of adjacent triangles, the second where the
edges are viewed as semiflexible polymers so that the bending energy is related to the angles between the
tangent vectors of next-nearest-neighbor triangles. The first model can be solved exactly whereas the second is
more involved. It was recently introduced by Liverpool and Golestanian, Phys. Rev80etD5(1998; Phys.

Rev. E62, 5488(2000 as a model for double-stranded biopolymers such as DNA. Comparing observables
such as the autocorrelation functions of the tangent vectors and the bond-director field, the probability distri-
bution functions of the end-to-end distance, and the mean-squared twist we confirm the existence of local twist
correlation, but find no indications for other predicted features such as twist-stretch coupling, kinks, or oscil-
lations in the autocorrelation function of the bond-director field.
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[. INTRODUCTION We study the discretized version of the simulation model
of Liverpool and co-workerg1,2] in the low-temperature
A characteristic feature of many biopolymers is their highregime with the help of scaling arguments and Monte Carlo
bending stiffness. Contour lengths of the order of microme{MC) simulations. In order to understand and to quantify the
ters and persistence lengths of the order of 50 nm in the cagdfects arising from the local twist structure of the Liverpool
of DNA even allow microscopy techniques to be used tomodel we compare it with an analytically more tractable
directly observe their structure and dynami&4]. The model where the bending stiffness is defined via the interac-
model mostly used to interpret recent experimental data ofion of the normal vectors so that there is no tendency to
micromechanical manipulations of single DNA chajs-8]  helical structures. Furthermore, we perform several MC
is that of the Kratky-Porod wormlike chain in which the simulation runs with an additional external force in order to
polymer flexibility is determined by a single length, the per-test if the preferred buckling mechanism occurs via kinks.
sistence length, . Generalizations account for the chain he-
licity and coupling terms between bending, stretching, and || cONTINUOUS DESCRIPTION OF TWO COUPLED
twisting allowed by symmetry9—-20]. All these continuum SEMIFLEXIBLE CHAINS
models of DNA neglect the double-stranded structure of
DNA and one may ask, if this feature could not cause qua"- A ribbon is an ineXtenSibIe, unshearable rod that can be
tative different behavior. parameterized by the arclength To each points one at-
The bending stiffness of single- and double-strandedaches a triad of unit vectoisl;(s)}. The vectorsd,(s) and
DNA, for example, differs by a factor of 2B1]. The sim-  dx(s) are directed along the two principle axis of the cross
plest model that takes the double strandedness into accountSgction, the vectods(s) is the tangent vector. As the triad is
the railway-track model22] where two wormlike chains are an orthonormal basis set they satisfy kinematic equations of
coupled with harmonic springs. In two dimensions one findghe form
drastical consequences: the bending fluctuations in the plane g
of the ribbon are strongly suppressed. The molecule becomes
effectively stiffer on larger length scales. But the relevant d_sdi(s)zfiikui(s)dk(s) @
guestion is what are the effects in three dimensions? Liver-
pool and co-workerg1,2] investigated a version of the with ¢, being the alternating tensor ang(s) representing
railway-track model in three dimensions where bending inbend [u,(s) out of plane, andu,(s) in pland and twist
the plane of the ribbon is forbidden by a constraint. Usingstrains| u,(s)], respectively. One can find a relation between
analytical and simulation tEChniqueS they prediCt the eXiSthe ordinary Frenet equations Containing 0n|y two param-
tence of a low-temperature regime where ribbons adopt @ters, the curvature(s) and the torsionr(s),
kink-rod structure due to a spontaneously appearing short-
range twist structure resulting in an oscillatory behavior of dt(s)

the autocorrelation function of the bond-director field. Fur- d—=K(s)n(s), (2)
thermore a twist-stretch coupling is predicted. S
db(s) 3
=—7(s)n(s),
*Electronic address: mergell@mpip-mainz.mpg.de ds r(s)n(s) ©
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dn(s)
ds

=17(s)b(s) — k(S)t(S), (4)

and Eq.(1) by fixing ds(s) =t(s) so thatd;(s) andd,(s) are
given by a rotation around(s) with angle W(s). In this
context W(s) can be seen as the twist andl#7,23. A
straightforward calculation gives for the generalized tor-
sions: uq(s)= —(d/ds)dz(s)-ds(s) = k(s)cosW¥(s), u,(s) . ]
= (d/ds)ds(s) - dy(S) = k(s)sinW(s), and Us(s _ FIG. 1. lllustration of the used variables. The Ieng_th of each
= (d/ds)d(s) - d,(s) = 7(s) + dW¥(s)/ds. The total twist Tw trlelmgle [ti] corr_esponds to the bond I_engthand the heightb|

of a ribbon is thus given by the integration of the local twist ~ 2P tan(«) defines the strand separation lendt} term the fold-
us(s) along the contour normalized by the factotr 2 ing angles.

Ill. GEOMETRY OF TRIANGULATED RIBBONS

1 (L
Tw= Efo us(s)ds ) Following Liverpool and co-worker$l,2] we consider

ribbons discretized by triangulation. In order to extract some
;undamental properties of double-stranded semiflexible poly-

with L being the contour length. Together with the paramete . - . )
- , i mers we consider a ribbonlike system composed of isosceles
setu;(s), which determines whether the stress-free referencgigngles as shown in Fig. 1. The orientation of each triangle

configuration includes spontaneous curvature and twist, thg given byN—1 rotations around the edges of the triangles
elastic part of the Hiclmiltonian is usually defined by qua- it folding angles{,}. N is the number of triangles char-
dratic terms inu;(s) — u;(s) [11-20,24. acterized by a set of trihedror(s;,b; ,n;} wheret; is the

It is an interesting question to which extent this generictangent vector of théth triangle,b; is the bond director, and
description applies to more microscopic models of DNAp, is the normal vector.
[25]. The simplest case is that of a “railway-track” or ladder Going from one set of trihedror(s; ,b; ,n;} to the neigh-
model consisting of twdor more semiflexible chains bor set{t;,,b;.1,N.} implies a rotationR; around the

edge between the respective triangles with arfjlend a

k(L d?ry(s) 2 d?ry(s) 2 reflection ofb; andn;, i.e.,
Httz_f S + , (6)
i+1 i
plus a coupling between opposite points on different chains bisi | =TRi| b (10)
[22]. Liverpool and co-workergl,2] considered the limit Ni;q n;

where the distanca between the coupling points.e., the _
width of the ribbon is imposed as a rigid constraint that With
prevents bending in the plane of the ribbat(s)/ds- b(s)

=0 where t(s)=dr(s)/ds is the tangent vector to the 0
midcurve r(s)=rq(s)—al2=r,(s)+a/2 and b(s) is the 7=10 -1 0 [, (12
bond director pointing from one strand to the other. Note, 0o o0 -1

that the constraint is equivalent t(s)=0. Rewriting Eq.

(6) in terms of ribbon variables they found ttiv, te-big tinig

k L dzr(s) 2 a2 dzb(S) 2 Ri: bi'ti+1 bi'bH—l bi'ni+1 . (12)
Htt:ifo 5| 2 ds2 2\ g< O Mi-ticr Ni-birr NNy
. The matrix producZR; can be viewed as a transfer matrix.
which can also be expressed as The evaluation of the scalar products7f gives
dt)? R;i 11=c0g 6;) +cog @) [1—cog )],
d—S = K2, (8) '

Ri10=—coga)sin(a)[1—cog 6;)],

21\ 2 2 2 2 2 . .
d<? ds ds ds ds
2 22 Ri 1= cog a)sin(@)[ 1~ cog 6],
+ (k= 79)"°. 9
Ri 2o=C0g 6;) +sin(a)? 1—cog 6,)],
Note, that henceforth we us®s) as the bond director and
n(s) as the normal vector to the ribbon plane. Ri 23= —cog a)sin(6;),
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1 i+1 COS(a)
TiEBJE:i nj'bj+1%T(0i+0i+l)1 (15)

where the accuracy of the right-hand side expressions only
depends on the refinement of the discretization, i.e., on the
values ofb and a.

Hence a spontaneous bending can be introduced via an
additional term to the Hamiltonian with H.,,
=Keur Zi(ZjZin; -ty 11— 865,7)? and a spontaneous twist
can be introduced by an additional tern¥{r,
=Ky Zi(Z]2in;- by 1~ 6sp;)2. Note, that the total twist Tw
is given by Tw=1/(27)2;7;.

IV. MODEL DESCRIPTION

The bending stiffness within the given discretization can
be taken into account by various interactions. One possible
definition of a bending stiffness, which makes the problem
analytically tractable, is a nearest-neighbor interaction
(plaquette stiffnegsbetween the normal vectofs;} in anal-

@ ® (© ® ogy to the triangulation of vesicld®6] that results in the

FIG. 2. lllustration of bending, twisting, and kinkin¢a) A flat following Hamiltonian:
ribbon as ground state conformatigh) A twisted structure(c) The
same twisted structure obtained with a smoother discretizatipn. Hun
Unlike twists meeting at the center resulting in a kink withposi- KgT = kigl (1+ni-niiq). (16)
tive for i<N/2, negative fori=N/2, and|6,|=]|6;,4|, i.e., 56,
=0,Yi#N/2, and56y;,=20y,. (€) A bent structure(f) A mixture
of bent and twist resembling a solenoidal structure.

N—-1

In contrast Liverpool and co-workef&,2] were interested in
the statistical mechanics of coupled wormlike chains and

e fa therefore chose a next-nearest-neighbor interactexige
Rizr=sin()sin()), stiffnes$ between the tangent vectofs} with rigidity k so
Ri 3= COS @)Sin( ), that the Hamiltonian is given by

N-2
R; 33=C0g 6;). 13 H
s cos ) " T k2 (tit). (17)
kBT i=1

In order to quantify properties such as bending and twist-
ing within the given discretization we study the relation be- o )
tween the folding angles; and these quantities that is illus- BOth definitions lead to a flat ribbon as the ground state

trated in Fig. 2. One recognizes that the chain is not bent iffonformation for zero temperatur@s=0. o
case off,— 6, . ;= 56,=0 and that one gains purely twisted The above defined interactions lead to very distinct con-

structures ifg,=const. On the other hand, the chain is un-formational features of the ribbon that can be understood by
twisted but bent if56, =26, . In case off,# = 6, ., and 6; building up the ribbon just by adding successively the tri-

#0 the chain is bent and twisted simultaneously resulting irfngles in the absence of thermal f_Iuctuations. Assuming that
solenoidal/torsional structures as is illustrated in Fig).2 0170 all subsequent angleh with i>1 vanish in the case

kink is characterized by unlike twists meeting at an edge as {ff the nearest-neighbor interactiort((,). In contrast the
is shown in Fig. 2d). tangent-tangent interactiort(;) leads to the formation of a

Due to the triangulation of the ribbon one has to considef€lix With 6= 6, , as a result of the enforced alignment of
three triangles to calculate the discretized expressions for tH8€ tangent vectors. This suggests a correlation of the folding

out-of-plane bending strainu,(s) = — (d/ds)t(s) - n(s)~ angles{6;} that entails at least locally helical structures.
—[t(s+As)—t(s)]/As-n(s) = — (L/AS)t(s+As)-n(s) and Assuming that the chains are rather stiffontinuum
the twist strain us(s)=(d/ds)b(s)-n(s)~[b(s+As) limit), i.e., small folding anglesy;, one can expand the

_ b(S)/AS] . n(s) — (1/AS)b(S+ AS) . n(s), which we Ca”Ki Hamlltonlans with regard 10, . SinceHnn is diagonal in0i ,
and r;, respectively. The local curvature and the local It S sufficient to consider terms up to second ordé. con-
twist rater; between trianglé andi+2 are therefore given (&iNS coupling terms betweef) and 6, ,, which makes it

by necessary to keep terms up to fourth order in the analysis,
i+1 . N—1
. sm(a) Hnn K 2
Ki=—5j2=i Nty 1~ —— 86, (14) T2 o (18)
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Hy k' 1 s
tt . 2 2 2
—_—~ Si 007 1—-—=006; n(0)-n(s)y=exp ———|. 22
+sin(a)2cod a)26? 9_2+1] (19 For «= /2 one recovers the usual wormlike chain result for
t two dimensions. All cross-correlation functiorithe off-

diagonal elements ofA)) vanish. Equation$21) and (22)
with 86,=6,— 6, ;. represent the persistence IengghnzIptan(oz)2 for bending
within the plane of the ribbon and the persistence length
Ipyc,ut=lpsin(a)2 for bending out of the plane of the ribbon,
respectively[24]. This model was recently treated as a

Both models have local interactions and can be studie@visted zigzag fiber within the framework of a two-angle
conveniently using a dynamic MC scheme. Trial moves conmodel for studying structural properties of chromd@9)].
sist of small random changes of the folding angles by a small From the tangent-tangent correlation function one can cal-
amplitude 14k, wherek is the bending stifiness, and are culate the mean-squared end-to-end distance,
accepted or rejected according to the Metropolis scheme . .
[27]. In the simulations we always use the full Hgmlltonlans R§=((R(L)—R(0))2)=j dslj dsy(t(s1)-t(S,))
Egs.(16) and (17). MC moves changing the folding angles 0 0
correspond to the well-known Pivot algoritH@8]. The con-
formations are subsequen;ly rec_alculated from EGS) - =2Llp—2I2 1—exp{—£”. (23)
(13) and analyzed. Each simulation run comprises 100 000 P I
MC moves where one MC move corresponds\te 1 trials
with N being the number of triangles. The longest correlationEquations(20) and (23) are identical to results for single
time we observed was of the order of 50 MC moves for thewormlike chaing30]. Equation(23) interpolates between the
total twist of the chain. In order to check if equilibrium is limiting behaviors of random coils (@) for L>1, and
reached we compared simulation runs with a flat initial con-igid rods (%) for L<I,,.
formation, i.e.,#;=0, with simulation runs with crumpled
conformations corresponding to equally distributed ang|es VIl. EDGE STIFFNESS
out of the interval — 1/\k; 1/yk]. Both runs yield the same
results for the calculated observables.

V. MC SIMULATION

In the following we present a simple scaling argument
that allows us to rationalize the behavior of the Liverpool
model. Consider first thé6 part of Eq.(19). In the absence
VI. PLAQUETTE STIFFNESS of other terms the folding angles would perform a simple
random walk with step lengths6?) =1/ sin(e)?. The lead-
ing term limiting the fluctuations of the folding angles

ound zero is of orde@(&i“). The behavior of the coupled
ngi/stem can be inferred from scaling arguments similar to
those used for polymer adsorption. Consider a vanishing
folding angle and follow the chain in either direction. Up to
a characteristic number of stegsthe folding angles will
show simple diffusion. As a consequence the mean-squared
folding angle averaged over this short segment<0§)

Since the Hamiltoniari,, of Eqg. (18) is quadratic and
diagonal in ¢; the solution in angle space is trivial. As a
consequence of the independence of successive foldi
angles it yields(6,6;)=(1/k)&; and (A)=(IT}_;(7Ry))
=(7TR)' ™" where the matrix product is carried out in the
eigenvector basis gf7R,) (the eigenvectors depend only on
the geometry of the trianglesThe diagonal elements ¢f4)
are the correlation functions @f;-t;),(b;-b;),(n;-n;). Thus

one calculate§7R), diagonalizes it, raises it to the power 5 : .
of j—i, transforms it back, and performs the continuum=9(9¢;) corresponding to a potential energe,/ksT

chain limit with S=(j —i)b,Ip=bk/sin(a)2, a ~g< 0i4)~3g(0i2>2~393<50i2). The f_ree diffu_sion of the
=1ptan(e),(j—i)—=,b—0, ie., a—0, wherel, is the folding angles has_ to stop when this potential energy is of
persistence lengtha is the strand separatiob,is the Kuhn ~ OrderkgT, suggesting

segment length, €s<L is the arclength, and is the con-
tour length. Note that within this model is a fixed param-

2\ _
eter that determines bending characteristics of the ribbon. An (667)= ksin(a)?’ (24)
exact expression for the autocorrelation functions is ob-
tained, ktar‘(a)z 1/3
9~ T) . (25
s
<t(0)-t(S)>=eXD( - —), (20)
'o (61)=9(6?), (26)
s (6:6;) F{ |j—i|)
b(0)-b(s))=exg — ——|, 21 — oo —exp - — | (27)
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10 FIG. 4. Comparison of MC data and analytical resuislid
line) for the autocorrelation function of the tangent vectors with
_____ P =50 (squarel k=100 (circles, k=200 (upward triangles k
o8 1 | S ] =500 (downward triangles and «= 7/3, andk=50 anda= 7/4
Nq’; (diamond$, a= 7/6 (pentagons
\%
A .
‘o . 2 j2 2
© 0lfe t-t=1— S|n(2a) ( > 502k) , (28)
k=i/2
‘ . . ‘ . COS(CY)Z -1 5 -1 j-1
005 06 07 o8 05 1 11 bi-bj=1-— (Zl 0k+2k2=i k/gﬂ OB |
(b) o (29)
1 ' ' ' ' ' TR -1 j-1
ni-nj=1-> > 86%+coga)?Y 0,6, .
k=i/2 k=i K =k+1
0.1t (30
A ' Note thati,j are either odd or even depending on which
ﬁ strand is under consideration. Without loss of generality we
s choosd,j to be even. First of all we use th@{(0)-t(s)) has
Vo o0t b o to interpolate between 1 fa=0 and O fors—o and that
the right hand side of Eq28) is the Taylor expansion up to
first order  of the exponential function
exp(sin@)%/2(212,,60,)?). Substituting thers=2|j—i|b
0.001 0 1 2 3 "t 5 p and|,=4bk, performing the continuum chain limit with
—0 anda— /2, respectively, i.e., keeping the strand sepa-
© s/gb rationa constant, yields the following expression for the au-

FIG. 3. (a), (b) Scaling plots for(6?) (downward triangles tocorrelation function of the tangent vectors:

(66?) (squares and g with a==/3 (upward triangles and k .

=50, respectively(c) Numerical evidence for the derived expres- _ >

sion of (6,6;). The data refer t&=50 (squarel k=100 (circles, (t(O)-t(S))—exp< Ip)' (32)

k=200 (upward triangles k=500 (downward triangles and «

=m/4. We determine the correct prefactgy,=0.56-0.05 ofg  Thus the mean-squared end-to-end distaRée becomes

from the numerical data of the folding angle correlation functionjgentical to Eq.(23). Equation(31) is confirmed by our MC

(6;6;) that is our solely free parameter and use it for all following gjmulation data shown in Fig. 4.

comparisons between scaling analysis and numerical results. To get an idea of the structural properties characterized by

the autocorrelation function of the bond directébs: b;) we

Figure 3 shows that these arguments are fully supportedalculate the mean-squared twi{iw(i,j)2) of the ribbon.

by the results of our MC simulations wiith=(0.56-0.05)  Following the definition of the local twist ratg of Eq. (15)

X[k tan(a) /3], the total twist between two triangles of indeandj is just
Using again the transfer matrix ansatz one obtains in théhe sum of the local twist angles determined by the projec-

low-temperature limit by considering only terms of the ordertions of the normal vector of thih triangle onto the bond

O(Hiz) the following expression fot;-t;, b;-b; andn;-n;: director of the {+1)th triangle, that is
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N coga) :
Wi, )=52 2 nibia=—— 2 b (32

Comparing Eqs(29) and(32) we find for small twist angles A 0.1
S
(bi-b)=1-27%(Tw(i,})?). (33 5
-4

Hence the autocorrelation function of the bond directors can  * 001 |

be seen as a measure for the local twist structure of the
ribbon.

In contrast to the plaquette stiffness model the angles . .
are correlatedsee Eq.(27)]. Therefore the double summa- o 5 4 p 3 10
tion over(4; ;) in Eq.(29) yields an analogous result as it is
obtained in the calculation of the mean-squared end-to-end

distance of the wormlike chain model. Using the derived
scaling expressions of Eq®5) and(26), the same substitu-
tions as in EqQ.(31), and performing the continuum chain
limit one obtains the following relationship for the autocor-
relation function of the bond directors: A
(=]
(b(0)-b(s))=exp —27%(Tw(0,)?)) (34) %
=]
v
with
TOZ—ls—Zl— - 35
2 4 6 8 10
andgb= g /°a?¥3Y3, wheregy;; = 0.56+0.05 is the fitted (b) s/gh

prefactor for the scaling functiog. a represents the strand

separation of the ribbon which is given bg=|b; B ~ , = :
—ibtan(a). Hence we observe two length scales influencK— 20 (Squares k=100 (circles, k=200 (upward trianglek k
ing the local twist structure of the ribbon: on the one hand . 500 (downward trianglels and « = /3. The data show the pre-

. - ’ dicted functional(solid line) form for (b(0)-b(s)) of Eq. (34). In
the single-strand pgrsstence Ieng;hand on Fhe other hand, order to check the scaling argument of E84) we determined the
the strand separatioa. The pr_edlcted_scalln_g behavior _Of_ correct prefactogs;; = 0.56+ 0.05 ofg with the help of the numeri-
(b(0)-b(s)) can be observed in the simulation data as it iscq) gata of 4, ¢;) (see Fig. 3and put it in Eq.(34). The agreement
shown in Fig 5. Note thatb(0)-b(s)) as well as all other g excellent. The dashed line which oscillates is the predicted func-
Calculated Observables Wlthll’l thIS mOde| |S |ndependent O{iona| form of Liverp00| and Co_worker@_’z]_ (b) Comparison of
the geometry of the triangles in contrast to the previouspur simulation data with the analytical result of Liverpool and co-

FIG. 5. (a) Autocorrelation function of the bond directors with

model wherea was a fixed parameter. workers(dashed ling The predicted oscillation and resultant pitch
Equation(30) can be evaluated in the same manner resultis not recovered. But we find the same scaling behavior of the
ing in helical persistence length with=gb~15%a?>. It is also striking
that the predicted functional form of Liverpool and co-workers is in
(n(0)-n(s))=(t(0)-t(s))(b(0)-b(s)) very good agreement with our numerical data within one helical

S persistence length, .
:exp( - —27%(Tw(0,8)%)].  (36)
" (b(O)-t(s)>=(2w)2ai<Tw(0,s)2>e‘(2”)2< ™ (08)%),
Equation (34) shows that the autocorrelation function of ds
the normal vectors is the product dft(0)-t(s)) and 37)
(b(0)-b(s)) (Fig. 6). For very stiff chains, the tangent cor-
relation function gives just small corrections to the normalEquation(37) can be understood qualitatively in the follow-
vector correlation function. Therefore one can interpret Eqing way. Due to the anisotropic rigidity of the ribbon
(34) as the rigid rod limit of Eq(36). the scalar produdb(0)-t(s) is only nonzero if the chain is
Other important structural properties of the ribbon can bebent and twisted simultaneously. In case the ribbon is either
extracted out of the cross-correlation functio(is(0)-t(s)) solely bent or solely twisted the bond directors are always
and (n(0)-b(s)) describe the mean curvature and meanperpendicular to the tangent vectors and the scalar product
twist, respectively, and vanish in both models for symmetryb(0)-t(s) vanishes for alk. The rate of mean twist of one
reasons. Fo¢b(0)-t(s)) we empirically observe the follow- helical persistence lenglly=gb that defines the size of the
ing relationship: locally existing helical structures can be calculated with Eq.
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2 001 = oty
%
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0.001 : : : : 0
0 2 4 6 8 10
s/gb Tw(0,L)
FIG. 6. Autocorrelation function of the normal vectors wkh FIG. 8. Comparison of the probability distribution functions of

=50 (squares k=100 (circles, k=200 (upward triangles k  the total twist of the ribbon for both models withf
=500 (downward triangles and o= /3. We divided out of the ={0,0.01,0.02. . .,0.09 andl,=L =400 with the scaling analysis

normal vector correlation functiofsolid line) the tangent correla-  for f=0. One recovers the same Gaussian shape for all values of
tion function(t(0)-t(s)) [see Eq.(36)] so that one should regain

the same exponential decay as {bf0)- b(s)) that is in agreement

with the numerical data. . .
consequence of the correlation of the folding anglé$. In

order to understand and to quantify the effects arising from
(35) yielding W%i% This corresponds to a the local twist we measured the probability distribution func-
typical twist angle of¥ = #/8 using Tw=27V¥. Within |, tions of the folding angles, of the twist, and of the end-to-end
the twist rate is determined by the derivative of the meandistance for different rigidities and compared the latter with
squared twist d/ds)(Tw(O,s)2> that gives rise to the in- the usual wormlike chain model to see which differences
creasing correlation functiofb(0)-t(s)) up to the maxi- Occur.
mum value atl,=gb. For larger internal distances of the If there is a preference for kinking one can enforce this
chain the rate of mean twist is a random sequence §fso  Property by applying an additional constant forég,cy
that the cross-correlation function has to vanish and thereforg fRe/Rg that compresses the ribbon. In addition the
decreases exponentially with exp@m)%Tw(0,s)2)). Figure change in the end-to-end distariRe caused by the buckling

7 compares Eq37) with our numerical data. The agreement force should affect the twist distribution functid?(Tw) if
is excellent. Re and Tw are coupled.

For small forces we calculate the change of twist under
VIIl. BEHAVIOR UNDER COMPRESSION: EULER the influence of the external forég, ., = f within the frame-
BUCKLING VS KINKS work of linear response theory:

As discussed in Sec. Il the edge stiffness model includes
local twist correlations at least on small length scales as a (ATw(0,L)2)=(Tw(0,L)%) —(Tw(0,L)%);—¢

0.6 DN - ' ' =—BF(ReTW(O.L)?)¢_¢
‘ —(Re)o(TW(OL)?) ) (39

05

04
with 8= 1/kgT. This predicts a change of the mean-squared

twist of the chain if a twist-stretch coupling determined by
(ReTw(0,L)?);_o exists. Note thatRgTw(0L));—o van-
ishes due to symmetry reasons. The evaluation of our nu-
merical data yields thatR:Tw(0,L)?) is uncorrelated, too.
To quantify if higher order terms ificontribute to a change
of (Tw(0,L)?) we carried out several simulation runs with
0 ' : : ' : varying force strengthsf={0,0.01,0.02...,0.03 corre-
sponding to Rg(f)/Rg(0)={1,0.95,0.87,0.71,0.51,0.36,
0.26,0.21,0.17,0.15

FIG. 7. Cross-correlation function of the bond directors and the ~Figure 8 shows the same Gaussian shape for all measured
tangent vectors with =50 (squares k=100 (circles, k=200 (up-  Probability distribution functions of the total twist of the rib-
ward triangle k=500 (downward trianglels k= 1000(diamondy,  bon P(Tw(0,L),f). This implicates that there is no twist-
and a= /3. The data validate the predicted functional fognlid  stretch coupling inherent in the system. The same is valid for
line) for (b(0)-t(s)) of Eq. (37). the distribution function of the folding angles.

03

02

3gb/(da)<b(0)t(s)>

0.1

s/gb
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FIG. 9. Probability distribution functions of the end-to-end dis-  FIG. 10. End-to-end distand®: as a function of the product of
tance of the edge stiffness model for different discretizatidds ( the twist left and right of the center of the chain
=800 upward trianglesN=600 downward trianglgswith « Tw(0,L/2) Tw(L/2,L), which is a measure for unlik@egative sigh
=m/4 andl,=L =400 calculated with the help of the multiple his- and like (positive sign twists meeting at the center, and as a func-
togram method 31] and the usual wormlike chain modé&olid tion of the applied buckling force with=0 (squares0.03(circles,
line). The probability distribution functiotPDF) of the wormlike ~ 0.0Gtriangles, andl,=200, L=400. R refers to the average of
chain model is calculated with the derived analytical expression obne interval of Tw(Q,/2)Tw(L/2,L) and(Rg) refers to the mean
Wilhelm and Frey{32]. value of all sampled end-to-end distances. One does not find an

asymmetry between end-to-end distances for like and unlike twists
meeting at the center. The larger fluctuations for larger values of

Moreover we measured the probability distribution func—TW(O’le)TW(L/Z’L) are the resuit of a poorer sampling rate.
tion P(Rg,f) of the end-to-end distandeg for all applied
forcesf. Using the multiple histogram method developed by ) ) ] )
Ferrenberg and Swendsgd1] one can then recombine all resu_lts of our MC simulations with th.e help of a simple
measured histograms with a reweighting procedure to écallng argument. We recover the predlgted S|mple exponen-
single probability distribution functioP(Re) with overall tl?.| decay of the ta_ngent-tangent correlation funcﬂ_ory with the
very good statistics. Figure 9 show¥Rg) for M, and the Single-strand persistence lengfnand thatt(0)- t(s) is inde-
wormlike chain model. Quite contrary to a shift to noticeably PEndent of the separatianof the two strands, which is, in
shorter end-to-end distancBs as one would expect for the addltl_on tol, the other relevant length 'scale in the prqblem.
above described phenomena of kinks one just recovers tH&/SO in agreement with Ref§1,2] we find that the helical
usual wormlike chain behavior. This indicates that the ribborPl?;sz'lsstence length, and the helical pitchP scale with
just bends under the external force in contradiction to a kinklp @~ Qualitatively, one would expect to see oscillations in
rod structure. Another quantity that is sensitive to the presthe bond-director correlation function, F<lI,. This can be
ence of kinks is a three-point correlation function of the end-understood by calculating the rate of mean twist withjn
to-end distanc®g and the twist to the left Tw(Q/2), andto ~ =gb, i.e., V(Tw(0,gb)%). If the mean twist rate exceeds
the right Tw(L/2,L) of the center of the chain. Due to the an osqillatory behavior has_to_ be observed. But our calcula-
buckling force the center of the chain is labeled which meandon gives a twist rate withinl,=gb of approximately

that a kink is detected if the end-to-end distances with™1/16. For larger distances of the chain the rate of mean
Tw(0,L/2) Tw(L/2,L)<0 (unlike twists meeting at the cen- twistis just given by a random sequence-o1/16 and thus
te are smaller than the end-to-end distances witit@nnot account for an oscillatory behavior {@f(0)- b(s)).
Tw(0,L/2) Tw(L/2,L)>0 (like twists meeting at the cenfer Liverpool and co-workers predi¢t =1y, while our analysis
Figure 10 shows the mean end-to-end distance depending didicatesP=16l, as it is demonstrated in Fig.(§. The
the value of Tw(Q,/2) Tw(L/2,L) for |,=200L =400, and authors claimed support from their own simulations, but
f=0,f=0.03f =0.06. We do not find an asymmetry between failed to provide a quantitative comparison between the!r
like and unlike twists meeting at the center as it would supumerical and analytical results. In fact the presented oscil-
port the prediction of kinks made by Liverpool and co- lations seem to be ordinary fI_uctu_atlons Wlthln_the statistical
workers[1,2]. errors. But as can be seen in Fighpthe predicted func-
tional form for the bond-director autocorrelation function is
in very good agreement with our numerical data as well as
IX. SUMMARY :Nith %ur scaling results within one helical persistence length
b=9n.
We have reinvestigated the mechanical properties of the Moreover our simulation results with applied constant
model introduced by Liverpool and co-workel,2] of a  buckling forces do not provide any evidence of the predicted
double-stranded semiflexible polymer and rationalized théendency of kinking or the claimed twist-stretch coupling.
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